
Wellcome!

Thank you for choosing our LCD screen from AZ-Delivery. These are

available individually or bundled with I2C converter in green or blue, and in

two sizes: 16x02 and 20x04. In the following pages we will explain how to set

up and use the device.

Have fun!

Table of contents

Introduction..3

Technical data...6

Pinout..8

How to set up the Arduino IDE..10

How to set up the Raspberry Pi and Python..15

Connection of the module with the microcontroller......................................16

 Example sketch...18

Connection of the module with the microcontroller via I2C adapter............19

Arduino IDE library...20

Example sketch...21

Connecting the screen to the Raspberry Pi...24

Python-Skript...26

Connecting the screen to the Raspberry Pi via I2C adapter.......................34

Libraries and tools for Python..36

Python-Skript...38

- 2 -

Introduction

A liquid crystal display, or LCD, is a device that uses liquid crystals to

display visual characters.

Liquid crystals do not emit light themselves. LCD screens use a backlight

and liquid crystals to block light. When there is no current flowing through

the liquid crystals, they are in a chaotic state. Light from the backlight

passes through liquid crystals effortlessly. When current flows through liquid

crystals, they arrange themselves in a uniform state. This creates a shadow

on the screen that creates objects.

Simply put, LCD use liquid crystals to pass or block light coming from the

backlight. Pixels are created in this way. They are combined to display any

visible 2D objects on the screen. Each pixel area can be turned ON and

OFF by supplying electricity through an on-board controller chip.

Each segment of the liquid crystal display represents a pixel, and must be

controlled separately. For this reason, a special integrated circuit called a

driver chip is required. The 16x02(20x04) LCD has a driver chip called

"HD44780". To control the screen, the microcontroller must communicate

with the driver chip. The driver chip uses a kind of SPI interface to

communicate with a microcontroller.

- 3 -

The I2C adapter

The I2C adapter is a device that simplifies the connection between LCD

screens and microcontrollers. It uses the I2C interface to communicate with

the microcontroller. Multiple adapters can be connected to the same I2C

interface. The adapter is compatible with LCD screens, with integrated

HD44780 chips. The I2C adapter is compatible with both 16x02 LCD panels

and 20x04 LCD panels offered by AZ-Delivery.

The I2C adapter comes with a predefined I2C address, which is 0x27.

However, it can be changed by soldering the pads labeled A0, A1 and A2 on

the adapter.

- 4 -

How to set a specific I2C address of the adapter is shown in the following

table:

PADS I2C ADDRESS

A2 A1 A0

C C C 0x20

C C O 0x21

O C O 0x22

C O O 0x23

O C C 0x24

O C O 0x25

O O C 0x26

O O O 0x27

O - Open C - Closed

- 5 -

Technical data

» Operating voltage range: 3.3V to 5V

» Display area: 12 x 56mm

» LCD-type: STN,positiv,transflective,green/blue

» Backlight: ED, white

» Viewpoint: 180°

» Modes: parallel (8-bit und 4-bit)

» Operating temperature: -10 °C to 60 °C

» Dimensions: 36 x 80 x 12.5mm

[1.4 x 3.1 x 0.5in]

» Interface: I2C/parallel

» I2C-adress: 0x20 – 0x27

» Adjusting the contrast : Potentiometer

» Setting the background.: Jumper

The voltage for the backlight is 5V DC. For logic functions the current

consumption in operation is 1.5mA and for the backlight 30mA.

The resolution of the screen is 16x02, which means that characters can be

displayed in 2 lines with 16 characters per line. Each character consists of

5x7 pixels.

To adjust the contrast of the display, the I2C adapter has a built-in

potentiometer. Therefore a small screwdriver is needed for the adjustment.

- 6 -

To control the backlight of the LCD screen, the I2C adapter has a power

jumper for the backlight. The jumper is used to turn the backlight on/off.

When the jumper is connected, it is used to connect the power supply for

the backlight. When the jumper is unplugged, the backlight power supply is

disconnected.

- 7 -

Pinout without I2C adapter

The 16x02 LCD has 16 pins. The pin assignment is as follows (also applies

to 20x04):

- 8 -

Pinout with I2C adapter

The 16x02 LCD has 16 pins and the I2C adapter has 20. The adapter is

connected to the LCD as follows (this also applies to the 20x04):

Note: It is necessary to connect the I2C adapter and LCD display exactly as

shown above. If connected differently, the devices may be damaged.

- 9 -

Note for the Raspberry Pi: The voltage of the TTL logic level of the I/O

pins is 5V. To use the LCD panel and the I2C adapter with the Raspberry Pi,

a logic level converter must be used. Otherwise, feeding the signal through

the I/O pins of the module to the GPIO pins of the Raspberry Pi may cause

damage. Therefore, use the TXS0108E 8ch Logic Level Converter. offered

by AZ-Delivery.

- 10 -

https://az-delivery.com/products/logiklevel-wandler-3-3v-5v?_pos=3&_sid=e622e3656&_ss=r

How to set up the Arduino IDE

If the Arduino IDE is not installed, follow the link and download the

installation file for the operating system of your choice.

For Windows users: Double-click the downloaded .exel file and follow the

instructions in the installation window.

- 11 -

https://www.arduino.cc/en/Main/Software

For Linux users, download a file with the extension .tar.xz, which must be

extracted. Once it is extracted, go to the extracted directory and open the

terminal in that directory. Two .sh scripts need to be run, the first called

arduino-linux-setup.sh and the second called install.sh.

To run the first script in the terminal, open the terminal in the extracted

folder and run the following command:

sh arduino-linux-setup.sh user_name

user_name - is the name of a superuser in the Linux operating system. A

password for the superuser must be entered when starting the command.

Wait a few minutes for the script to complete.

The second script, named install.sh script, must be used after the first script

is installed. Run the following command in the terminal (extracted directory):

sh install.sh

After installing these scripts, go to All Apps where the Arduino IDE is

installed.

- 12 -

Almost all operating systems come with a pre-installed text editor (e.g.

Windows with Notepad, Linux Ubuntu with Gedit, Linux Raspbian with

Leafpad, etc.). All of these text editors are perfectly fine for the purpose of

the eBook.

The first thing to check is whether your PC can recognize an Arduino board.

Open the freshly installed Arduino IDE, and go to:

Tools > Board > {your board name here}

{your board name here} should be the Arduino/Genuino Uno, as it can be

seen on the following picture:

The port where the microcontroller board is connected must be selected. Go

to: Tools > Port > {port name goes here} and if the microcontroller board is

connected to the USB port, the port name can be seen in the drop-down

menu on the previous image.

- 13 -

If the Arduino IDE is used under Windows, the port names are as follows:

For Linux users, for example, the port name is /dev/ttyUSBx, where x is an

integer between 0 and 9.

- 14 -

How to set up the Raspberry Pi and Python

For the Raspberry Pi, the operating system must first be installed, then

everything must be set up so that it can be used in headless mode.

Headless mode allows you to connect to the Raspberry Pi remotely without

the need for a PC screen, mouse or keyboard. The only things used in this

mode are the Raspberry Pi itself, the power supply and the internet

connection. All of this is explained in detail in the free eBook:

Raspberry Pi Quick Startup Guide

The Raspbian operating system comes with Python pre-installed.

- 15 -

https://www.az-delivery.de/products/raspberry-pi-kostenfreies-e-book?ls=en

Connection of the module with the microcontroller

Connect the screen to the microcontroller as shown below

(applies to 16x02 as well):

- 16 -

LCD Pin MC Pin Draht Farbe

VSS GND Schwarzer Draht

VDD 5V Roter Draht

V0 Poti Oranger Draht

RS D2 Ochre Draht

RW GND Schwarzer Draht

E D3 Ochre Draht

D4 D4 Grüner Draht

D5 D5 Blauer Draht

D6 D6 Grüner Draht

D7 D7 Blauer Draht

K 5V Roter Draht

A GND Schwarzer Draht

- 17 -

Example sketch

The following sketch example is a modified sketch from the Arduino IDE:

File > Examples > LiquidCrystal > HelloWorld

#include <LiquidCrystal.h>

const uint8_t rs = 2, en = 3, d4 = 4, d5 = 5, d6 = 6, d7 = 7;

LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

void setup() {

 lcd.begin(16, 2); // change to “20, 4” if 20x04 is used

 lcd.clear();

}

void loop() {

 lcd.setCursor(0, 0);

 lcd.print("AZ-Delivery");

 lcd.setCursor(0, 1);

 lcd.print(millis() / 1000);

}

- 18 -

Connection of the module to the microcontroller with

I2C adapter

Connect the 16x02 screen and the I2C adapter to the microcontroller as

shown below (applies to 20x04 as well):

I2C-Adapter Pin MC Pin Color

SCL A5 green wire

SDA A4 blue wire

VCC 5V red wire

GND GND black wire

- 19 -

Library for Arduino IDE

To use the module with the Arduino IDE, it is recommended to download an
external library for it.The library used in this eBook is called
LiquidCrystal_I2C. To download it, click on this link and download the .zip
file.

To include the library, go to the Arduino IDE and go to:

Sketch > Include Library > Add .ZIP Library

and when a new window opens, locate and select the downloaded .zip file.

- 20 -

https://github.com/johnrickman/LiquidCrystal_I2C

Example sketch

The following sketch example is a modified sketch from the Arduino IDE:

File > Examples > LiquidCrystal > HelloWorld

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd = LiquidCrystal_I2C(0x27, 16, 2);

//change to “20, 4” if 20x04 is used

void setup() {

 lcd.init();

 lcd.backlight();

 delay(250);

 lcd.noBacklight();

 delay(1000);

 lcd.backlight();

 delay(1000);

}

void loop() {

 lcd.setCursor(0, 0);

 lcd.print("AZ-Delivery");

 lcd.setCursor(0, 1);

 lcd.print(millis() / 1000);

 delay(100);

}

- 21 -

The sketch starts with the inclusion of libraries named Wire and

LiquidCrystal_I2C.

Then an object named lcd is created. The object represents the display

itself, and to create this object, the following line of code is used:

LiquidCrystal_I2C lcd = LiquidCrystal_I2C(0x27, 16, 2);

Where 0x27 is the I2C address of the I2C adapter. 16 is the number of

characters per line and 2 is the number of lines.

In the setup() function, the lcd object is initialized with the following line of

code: lcd.init();

At the end of the setup() function, the backlight is tested by turning it OFF

and ON with a delay of 1000ms (1s).

In the loop() function, two predefined functions from the LiquidCrystal_I2C

library are used.

- 22 -

he first function is called setCursor(). The function has two arguments and

returns no value. The values of the arguments are integers. The first

number represents the Y position of the cursor, with values in the range 0 to

1, where 0 represents the first line and 1 represents the second line of the

screen. The second argument represents the X position of the cursor, with

values ranging from 0 to 15, where 0 reflects the first column and 15 the last

column of the screen.

The function must be used before the print() function. To show the print()

function where to display the text. If you do not use the setCusrsor()

function, the print() function will display the text at position (0, 0).

The print() function has one argument and does not return a value. The

argument represents the text, a string value, that will be displayed on the

screen.

In the loop() function, first the cursor is placed on the first line and then the

print() function displays the message AZ-Delivery. Then the cursor is placed

on the second line and the number of seconds since the microcontroller was

last powered up or reset is displayed.

NOTE: If your display does not show anything, you have to turn the

potentiometer on the I2C adapter.

- 23 -

Connecting the screen to the Raspberry Pi

Connect the module to the Raspberry Pi as shown below (applies to 20x04

as well):

- 24 -

Screen Pin Raspberry Pi Pin Physical Pin wire color

VSS GND 6 black wire

VDD 5V 2 red wire

RS GPIO26 37 blue wire

RW GND 39 black wire

E GPIO19 35 green wire

D4 GPIO13 33 brown wire

D5 GPIO6 31 gray wire

D6 GPIO5 29 gray wire

D7 GPIO11 23 brown wire

K GND 6 red wire

A 5V, via 220Ω resistor 2 orange wire

V0 potentiometer center pin

Potentiometer

GND right Pin 6 black wire

5V left Pin 2 red wire

- 25 -

Python-Skript

Two scripts are created, one for all functions and the other to use these

functions. Below you will find the code for the first script:

import RPi.GPIO as GPIO

import time

LCD_RS = 26

LCD_E = 19

LCD_D4 = 13

LCD_D5 = 6

LCD_D6 = 5

LCD_D7 = 11

Define some device constants

LCD_WIDTH = 16 # Maximum characters per line, change to “20”if

20x04

LCD_CHR = True

LCD_CMD = False

LCD_LINE_1 = 0x80 # LCD RAM address for the 1st line

LCD_LINE_2 = 0xC0 # LCD RAM address for the 2nd line

Timing constants

E_PULSE = 0.0005

E_DELAY = 0.0005

- 26 -

 # one tab

def lcd_init(RS, E, D4, D5, D6, D7):

 GPIO.setwarnings(False)

 GPIO.setmode(GPIO.BCM)

 global LCD_RS, LCD_E, LCD_D4, LCD_D5, LCD_D6, LCD_D7

 LCD_RS = RS

 LCD_E = E

 LCD_D4 = D4

 LCD_D5 = D5

 LCD_D6 = D6

 LCD_D7 = D7

 GPIO.setup(LCD_E, GPIO.OUT) # E

 GPIO.setup(LCD_RS, GPIO.OUT) # RS

 GPIO.setup(LCD_D4, GPIO.OUT) # DB4

 GPIO.setup(LCD_D5, GPIO.OUT) # DB5

 GPIO.setup(LCD_D6, GPIO.OUT) # DB6

 GPIO.setup(LCD_D7, GPIO.OUT) # DB7

 # Initialise display

 lcd_byte(0x33, LCD_CMD) # 110011 Initialise

 # 110010 Initialise

 lcd_byte(0x32, LCD_CMD)

 # 000110 Cursor move direction

 lcd_byte(0x06, LCD_CMD)

 # 001100 Display On,Cursor Off, Blink Off

 lcd_byte(0x0C, LCD_CMD)

 # 101000 Data length, number of lines, font size

 lcd_byte(0x28, LCD_CMD)

 # 000001 Clear display

 lcd_byte(0x01, LCD_CMD)

 time.sleep(E_DELAY)

- 27 -

 # one tab

def lcd_byte(bits, mode):

 GPIO.output(LCD_RS, mode) # RS

 GPIO.output(LCD_D4, False)

 GPIO.output(LCD_D5, False)

 GPIO.output(LCD_D6, False)

 GPIO.output(LCD_D7, False)

 if bits & 0x10 == 0x10:

 GPIO.output(LCD_D4, True)

 if bits & 0x20 == 0x20:

 GPIO.output(LCD_D5, True)

 if bits & 0x40 == 0x40:

 GPIO.output(LCD_D6, True)

 if bits & 0x80 == 0x80:

 GPIO.output(LCD_D7, True)

 lcd_toggle_enable() # Toggle 'Enable' pin

 GPIO.output(LCD_D4, False)

 GPIO.output(LCD_D5, False)

 GPIO.output(LCD_D6, False)

 GPIO.output(LCD_D7, False)

 if bits & 0x01 == 0x01:

 GPIO.output(LCD_D4, True)

 if bits & 0x02 == 0x02:

 GPIO.output(LCD_D5, True)

 if bits & 0x04 == 0x04:

 GPIO.output(LCD_D6, True)

 if bits & 0x08 == 0x08:

 GPIO.output(LCD_D7, True)

 # Toggle 'Enable' pin

 lcd_toggle_enable()

- 28 -

 # one tab

def lcd_toggle_enable():

 # Toggle enable

 time.sleep(E_DELAY)

 GPIO.output(LCD_E, True)

 time.sleep(E_PULSE)

 GPIO.output(LCD_E, False)

 time.sleep(E_DELAY)

def lcd_string(message, line):

 # Send string to display

 LCD_LINE_1 = 0x80

 LCD_LINE_2 = 0xC0

 message = message.ljust(LCD_WIDTH, " ")

 if line == 0:

 lcd_byte(LCD_LINE_1, LCD_CMD)

 elif line == 1:

 lcd_byte(LCD_LINE_2, LCD_CMD)

 else:

 print('This lcd has two lines, line 0 and line 1!')

 for i in range(LCD_WIDTH):

 lcd_byte(ord(message[i]), LCD_CHR)

def lcd_clear():

 lcd_byte(0x01, LCD_CMD)

Save the script under the name lcd16x02.py.

The code in the script is a modified code from the script at link:

- 29 -

https://bitbucket.org/MattHawkinsUK/rpispy-misc/raw/master/python/lcd_16x2.py

Below you will find the code for the main script:

import lcd16x02

from time import sleep

LCD_RS = 26

LCD_E = 19

LCD_D4 = 13

LCD_D5 = 6

LCD_D6 = 5

LCD_D7 = 11

Initialise display

lcd16x02.lcd_init(LCD_RS, LCD_E, LCD_D4, LCD_D5, LCD_D6, LCD_D7)

i = 0

print('[Press CTRL + C to end the script!]')

try:

 lcd16x02.lcd_string('AZ-Delivery', 0)

 print('AZ-Delivery')

 print('Printing variable on the LCD...')

 while True:

 lcd16x02.lcd_string('{}'.format(i), 1)

 i+=1

 sleep(0.001) # 1 millisecond delay

except KeyboardInterrupt:

 print('Script end!')

finally:

 lcd16x02.lcd_clear()

- 30 -

Save the script under the name lcd16x02main.py in the same directory as

the previous script. To run the script, open the terminal in the directory

where the script is stored and run the following command:

python3 lcd16x02main.py

The output should look like this:

To stop the script, press 'Ctrl + C' on the keyboard.

- 31 -

The first script is used to create all the functions to control the LCD screen,

which is not covered in this eBook. Only the main function of the script is

explained.

The main script starts with importing the first script and importing the sleep

function from the time library.

Then, six variables are defined to represent pins of the screen that are

connected to the pins of the Raspberry Pi.

Next, the screen is initialized with the following line of code:

lcd16x02.lcd_init(LCD_RS, LCD_E, LCD_D4, LCD_D5, LCD_D6, LCD_D7).

Then the variable "i" is created and initialized with the value zero. This is

used to indicate changing data on the display.

Then a try-except-finally code block is created. In the try block, the message

AZ-Delivery is first displayed on the first line of the screen, and then an

indefinite loop block (while True:) is created. In it, the variable i is timed on

the second line of the display and the value of the variable i is incremented

by 1. Between each repetition of the indefinite loop block there is a pause of

one millisecond (sleep(0.001)).

- 32 -

The except code block is executed with Ctrl+C. This is called

KeyboardInterrupt When this code block has been executed, the message

Script end! is displayed in the terminal. is displayed.

The finally code block is executed after the script. When the finally code

block has been executed, the lcd_clear() function is called, which clears the

screen's data buffer.

- 33 -

Connecting the screen to the Raspberry Pi with I2C

adapter

Connect the 16x02 screen and the I2C adapter to the Raspberry Pi as

shown below(applies the same to 20x04):

here the logic level converter must be used, because the I2C adapter works

only in the 5V range. The logic level converter used in this eBook is called

TXS0108E Logic Level Converter.

Connect the I2C adapter to the LCD panel as shown in the connection

diagram. Make sure that the integrated backlight jumper is connected (Red

wire, the right side of the I2C adapter on the connection diagram).

- 34 -

https://az-delivery.de/products/logiklevel-wandler-3-3v-5v?_pos=4&_sid=fd4b844fe&_ss=r
https://az-delivery.de/products/logiklevel-wandler-3-3v-5v?_pos=4&_sid=fd4b844fe&_ss=r

I2C-Adapter Pin LLC Pin Color

SCL B1 green wire

SDA B2 blue wire

VCC VB red wire

GND GND black wire

LLC Pin Raspberry Pi Pin Physischer Pin color

VA 3.3V 1 orange wire

A1 GPIO3 5 green wire

A2 GPIO2 3 blue wire

OE 3.3V (via resistor) 1 orange wire

GND GND 20 black wire

VB 5V 2 red wire

- 35 -

Libraries and Tools for Python

To use the screen with the Raspberry Pi, it is recommended to download an

external library. To download it, go to the following link and download the

script lcd_class_i2c.py. Save the script in the same directory where the

script of the next chapter is saved.

The lcd_class_i2c.py script uses the smbus library for Python. If it is not

installed yet, open the terminal and execute the following commands one

after the other:

sudo apt-get update

sudo apt-get install python3-smbus python3-dev

To determine the I2C address of the I2C adapter, the i2c-tools must be

installed. If it is not already installed, run the following command in the

terminal:

sudo apt-get install i2c-tools

- 36 -

https://github.com/Slaveche90/lcd_screens

To determine the I2C address of the I2C adapter, execute the following

command:

i2cdetec -y 1

where 0x27 is the I2C address of the I2C adapter.

- 37 -

Python-Skript

Below you will find the code for the main script:

import lcd_class_i2c as LCD

import time

I2C_ADDR = 0x27

LINE_WIDTH = 16

screen = LCD.lcd(line_width=LINE_WIDTH, i2c_address=I2C_ADDR)

print('[Press CTRL + C to end the script!]')

try:

 while True:

 print('Printing messages on the screen')

 screen.lcd_print('AZ-DELIVERY', 'LINE_1', 'CENTER')

 time.sleep(1) # 3 second delay

 print('Printing variable on the screen')

 for i in range(100):

 if i < 10:

 screen.lcd_print('0{}'.format(i), 'LINE_2', 'CENTER')

 else:

 screen.lcd_print('{}'.format(i), 'LINE_2', 'CENTER')

 time.sleep(0.00001)

- 38 -

one tab

 print('Testing backlight')

 time.sleep(1)

 screen.backlight('OFF')

 time.sleep(1)

 screen.backlight('ON')

 time.sleep(1)

 print('Clearing the screen\n')

 # Blank display

 screen.clear_screen()

 time.sleep(1)

except KeyboardInterrupt:

 print('\nScript end!')

finally:

 screen.clear_screen()

- 39 -

Save the script under the name lcd16x02i2c.py in the same directory as the

lcd_class_i2c.py script. To run the script, open the terminal in the directory

where the scripts are saved and run the following command:

python3 lcd16x02main.py

The output should look like this:

To stop the script, press 'Ctrl + C' on the keyboard.

- 40 -

The first script is used to create all the functions to control the LCD screen,

which is not covered in this eBook.

The main script starts by importing the first script lcd_class_i2c.py and the

time library.

Next, the screen object is created. This is used to control the screen. We

create the object with the following line of code:

screen=LCD.lcd(line_width=LINE_WIDTH, i2c_address=I2C_ADDR)

Where the lcd() constructor has two arguments. The first argument is called

line_width and represents the number of characters per line of the screen.

The lcd_class_i2c.py script can be used for 16x02 LCD screens as well as

for 20x04 screens. So the values passed to the line_width argument are 16

or 20. Any other value will result in an error, and the script sets the value of

this argument to 16. The second argument, called i2c_address represents

the I2C address of the I2C adapter, which in this case is 0x27.

- 41 -

Then a try-except-finally code block is created. In the try block, an Indefinite

loop block (while True:) is created. In the Indefinite loop block, first the

message AZ-Delivery is displayed in the first line of the screen. The

message is positioned in the middle of the line. This is done with the

following line of code:

screen.lcd_print('AZ-DELIVERY', 'LINE_1', 'CENTER')

Where the lcd_print() function is used. This function displays a message on

the screen. It has three arguments and returns no value. The second and

third arguments are optional. The first argument is a string representing the

message displayed on the screen. The second argument, also a string,

represents the line on which the message is displayed. The values for this

argument are: LINE_1 or LINE_2. The default value is LINE_1, which is

selected if the argument is not used. Any other value will result in an error

and the value will be set to the default LINE_1. The third argument, also a

string, represents the alignment of the text in the line. The values of this

argument are: LEFT, CENTER or RIGHT. The default value is LEFT, which

is selected if the argument is not used. Any other value will result in an

error and the value will also be set to the default value LEFT.

To display a variable on the screen, use the following lines of code:

my_var = 10

screen.lcd_print('{}'.format(my_var))

- 42 -

To control the backlight of the screen, the backlight() function is used. This

function has one argument and does not return a value. The value of the

argument is a string that can have only two values: ON or OFF. To turn the

screen ON, the following line of code is used:

screen.backlight('ON')

To turn it off, use the following:

screen.backlight('OFF')

To clear the screen (data buffer of the screen), use the clear_screen()

function. This function has no arguments and returns no value.

The except code block is executed when CTRL + C is pressed on the

keyboard. This is called KeyboardInterrupt. When this block has been

executed, the message Script end! is displayed in the terminal.

The finally code block is executed after the script. When the finally code

block has been executed, the clear_screen() function is executed. This

function clears the data buffer of the screen.

You have done it. You can now use our module for

your projects.

- 43 -

Now it's your turn! Develop your own projects and smart home installations.

We will show you how to do this in an uncomplicated and understandable

way on our blog. There we offer you sample scripts and tutorials with

interesting small projects to quickly get started in the world of

microelectronics. In addition, the Internet also offers you countless

opportunities to learn more about microelectronics.

If you are looking for more high-quality products for Arduino and

Raspberry Pi, AZ-Delivery Vertriebs GmbH is the right place for you.

We offer you numerous application examples, detailed installation

instructions, e-books, libraries and of course the support of our

technical experts.

https://az-delivery.de

Have Fun!

Impressum

https://az-delivery.de/pages/about - us

- 44 -

https://az-delivery.de/pages/about-us
https://az-delivery.de/pages/about-us
https://az-delivery.de/

	Introduction
	Technical data
	Pinout without I2C adapter
	Pinout with I2C adapter
	Connection of the module with the microcontroller
	Example sketch

	Connection of the module to the microcontroller with I2C adapter
	Library for Arduino IDE
	Example sketch
	Python-Skript

	Connecting the screen to the Raspberry Pi with I2C adapter
	Libraries and Tools for Python
	Python-Skript

