
Welcome!

Thank you for purchasing our AZ-Delivery KY-039 Heartbeat Sensor Module.

On the following pages, you will be introduced to how to use and set up this

handy device.

Have fun!

Table of Contents

Introduction..3

Specifications...4

The pinout..4

How to set-up Arduino IDE...5

How to set-up the Raspberry Pi and Python..9

Connecting the module with Uno...10

Sketch example..11

Connecting the module with Raspberry Pi...14

Basic script...25

Full Python script..27

- 2 -

Introduction

The KY-039 heartbeat sensor module has an IR LED, a photosensitive diode

and a resistor on-board. The output of the module is an analog voltage that

represents how much the infrared light a photosensitive diode receives. The

higher the value, the stronger the intensity of the infrared light.

Place a finger between the IR LED and the photosensitive diode of the

module. Heartbeats dilate the blood vessels in a finger, which filters the

infrared light at different levels. This creates a pulsating signal which can be

seen on the image of Serial Plotter (which is shown later in the text).

- 3 -

Specifications

» Operating voltage range: from 3.3V to 5V DC

» Operating temperature range: from -40°C to 85°C

» Dimensions: 19 x 15mm [0.73 x 0.6in]

The pinout

The KY-039 heartbeat sensor module has three pins. The pinout diagram is

shown on the following image:

- 4 -

How to set-up Arduino IDE

If the Arduino IDE is not installed, follow the link and download the installation

file for the operating system of choice.

For Windows users, double click on the downloaded .exe file and follow the

instructions in the installation window.

- 5 -

https://www.arduino.cc/en/Main/Software

For Linux users, download a file with the extension .tar.xz, which has to be

extracted. When it is extracted, go to the extracted directory and open the

terminal in that directory. Two .sh scripts have to be executed, the first called

arduino-linux-setup.sh and the second called install.sh.

To run the first script in the terminal, open the terminal in the extracted

directory and run the following command:

sh arduino-linux-setup.sh user_name

user_name - is the name of a superuser in the Linux operating system. A

password for the superuser has to be entered when the command is started.

Wait for a few minutes for the script to complete everything.

The second script called install.sh script has to be used after installation

of the first script. Run the following command in the terminal (extracted

directory): sh install.sh

After the installation of these scripts, go to the All Apps, where the

Arduino IDE is installed.

- 6 -

Almost all operating systems come with a text editor preinstalled (for

example, Windows comes with Notepad, Linux Ubuntu comes with

Gedit, Linux Raspbian comes with Leafpad, etc.). All of these text

editors are perfectly fine for the purpose of the eBook.

Next thing is to check if your PC can detect an Arduino board. Open freshly

installed Arduino IDE, and go to:

Tools > Board > {your board name here}

{your board name here} should be the Arduino/Genuino Uno, as it

can be seen on the following image:

The port to which the Arduino board is connected has to be selected. Go to:

Tools > Port > {port name goes here}

and when the Arduino board is connected to the USB port, the port name can

be seen in the drop-down menu on the previous image.

- 7 -

If the Arduino IDE is used on Windows, port names are as follows:

For Linux users, for example port name is /dev/ttyUSBx, where x

represents integer number between 0 and 9.

- 8 -

How to set-up the Raspberry Pi and Python

For the Raspberry Pi, first the operating system has to be installed, then

everything has to be set-up so that it can be used in the Headless mode.

The Headless mode enables remote connection to the Raspberry Pi, without

the need for a PC screen Monitor, mouse or keyboard. The only things that

are used in this mode are the Raspberry Pi itself, power supply and internet

connection. All of this is explained minutely in the free eBook:

Raspberry Pi Quick Startup Guide

The Raspbian operating system comes with Python preinstalled.

- 9 -

https://www.az-delivery.de/products/raspberry-pi-kostenfreies-e-book?ls=en

Connecting the module with Uno

Connect the KY-039 module with the Uno as shown on the following

connection diagram:

KY-039 pin > Uno pin

S > A0 Blue wire

- (GND) > GND Black wire

Middle pin (VCC) > 5V Red wire

- 10 -

Sketch example

#define ANALOG_PIN 0

float average = 0.0;

void setup() {

 Serial.begin(9600);

}

void loop() {

 for(uint8_t i = 0; i <= 19; i++) {

 average = average + analogRead(0);

 delay(1);

 }

 average = average / 20.0;

 Serial.println(average);

 average = 0.0;

}

- 11 -

Upload the sketch to the Uno and open the Serial Plotter (Tools > Serial

Plotter). The result should look like the output on the following image:

- 12 -

On the image of a Serial Plotter, you can easily see the heartbeats (larger

peaks). All that has to be done is to smooth the signal and then to count the

heartbeats or peaks on the diagram curve. This is done in the Python script of

the Connecting the module with Raspberry Pi chapter.

NOTE: To get these values, protect the sensor from any other light source.

The nontransparent box can be created where the sensor can be protected

from the external light source. If the sensor is not hidden from other light

sources, it reads the infrared light from other light sources which distort the

output signal. If that happens the signal has to be cleaned from that

distortions in order for measurements to be useful.

- 13 -

Connecting the module with Raspberry Pi

Because the Raspberry Pi does not have Analog to Digital Converter (ADC),

but for purpose of using the KY-013 module with the Raspberry Pi, the

Raspberry Pi has to be able to read analog voltages. The Uno can be used

for the purpose. In order to do so, the Uno is used on the Linux Raspbian

operating system. Uno can read analog voltages, and it can use Serial

Interface via USB port to send data to the Raspberry Pi.

First, the Arduino IDE has to be downloaded and installed on the Raspbian.

Second, the firmware for Uno has to be downloaded and uploaded to the

Uno, and lastly, the library for Python has to be downloaded and installed.

To do this, power on the Raspberry Pi and connect it to the internet. Start the

RealVNC app on the remote computer and connect the app to the Raspberry

Pi (like explained in the eBook for the Raspberry Pi).

First thing that has to be done when the Raspberry Pi is booted up is to

update the Raspbian; open the terminal and run the following command:

sudo apt-get update && sudo apt-get upgrade -y

And wait for the command to finish its job.

Now, the Raspbian operating system is up to date.

- 14 -

To download and install the Arduino IDE, go on the Arduino site and download

the tar.xz file of Arduino IDE for Linux ARM 32 bits as shown on the

following image:

Then, the tar.xz file has to be extracted. Open the File explorer in

directory where the tar.xz file is downloaded, right click on it, and run the

option Extract Here. Wait for a few minutes for the extracting process to

complete itself.

- 15 -

https://www.arduino.cc/en/Main/Software

Open terminal in extracted folder and run the following command:

sh arduino-linux-setup.sh pi

where pi is the name of the superuser in Raspbian.

After this, to install the Arduino IDE, run the following command:

sudo sh install.sh

- 16 -

The Arduino IDE is now installed. To run Arduino IDE, open the app:

Applications Menu > Programming > Arduino IDE

Before next steps, first the pip3 and git apps have to be installed; run the

following command:

sudo apt install python3-pip git -y

The library for Python is called nanpy. To install it, open terminal and run the

following command: pip3 install nanpy

- 17 -

After installing the nanpy library, download an Arduino firmware by running

the following command:

git clone https://github.com/nanpy/nanpy-firmware.git

Change directory to nanpy-firmware by running the following command:

cd nanpy-firmware

And run the following command:

sh configure.sh

Next, copy the nanpy-firmware directory into Arduino/libraries

directory. To do so, run the following command:

cp -avr nanpy-firmware/ ~/Arduino/libraries

The nanpy-firmware is now installed and ready to be used.

- 18 -

Connect the Uno via the USB cable to the Raspberry Pi and then open the

Arduino IDE in the Raspbian operating system. Check if the Arduino IDE can

detect the USB port to which the Uno is connected:

Tools > Port > dev/ttyUSB0

Then go to: Tools > Board > {board name}

and select Arduino Uno board.

Then, to open a sketch for the nanpy-firmware, go to:

File > Examples > nanpy-firmware > Nanpy

- 19 -

Upload the sketch to the Uno. To test if eveyrhing works properly, the simple

Blink script has to be created, where the on-board LED of the Uno is

blinked.

Open terminal, create the Scripts directory and the Blink.py script. To do

so, run the following commands, one by one:

mkdir Scrpits - create to the Scripts directory

cd /Scrpits - change to the Scripts directory

touch Blink.py - create new file called Blink.py

Open File Explorer, navigate to the Scrpits directory and open

Blink.py script in the default text editor:

- 20 -

In the Blink.py script write the following lines of code:

from nanpy import (ArduinoApi, SerialManager)

from time import sleep

ledPin = 13

try:

connection1 = SerialManager()

a = ArduinoApi(connection=connection1)

except:

print('Failed to connect to the Arduino')

print('[Press CTRL + C to end the script!]')

a.pinMode(ledPin, a.OUTPUT) # Setup Arduino

try:

while True:

a.digitalWrite(ledPin, a.HIGH)

print('Bulit in led HIGH')

sleep(1)

a.digitalWrite(ledPin, a.LOW)

print('Bulit in led LOW')

sleep(1)

except KeyboardInterrupt:

print('\nScript end!')

a.digitalWrite(ledPin, a.LOW)

- 21 -

Save the script. To run the script, open terminal in the directory where the

script is saved and run the following command:

python3 Blink.py

The result should look like the output on the following image:

To stop the script press CTRL + C on the keyboard.

The LED connected to the digital pin 13 of the Uno should start blinking every

second.

- 22 -

The script starts with importing two libraries, the nanpy library functions, and

the time.

Then, the variable called ledPin is created and initialized with number 13.

The number 13 represents the number of the digital pin on which LED is

connected (on-board LED of the UNO).

After that, the try-except block of code is used to try and connect to the

Uno. If the connection is not successful, the message:

Failed to connect to the Arduino

is displayed in the terminal.

If the connection is successful, the communication object called "a" is created

and initialized. The object "a" represents the Uno board. Any function used in

the Arduino IDE can be used with the "a" object, as it can been seen in the

code.

With the following line of code, the pin mode of the digital pin 13 is set-up:

a.pinMode(ledPin, a.OUTPUT)

Then, in the indefinite loop block (while True:) the function

digitalWrite() is used to set the state of the digital pin 13 (HIGH or LOW

state). With digitalWrite() function the LED connected to the pin 13 can

be turned ON or OFF .

- 23 -

In the indefinite loop block, the LED is first turned ON for a second, and then

turned OFF for a second. This is called blinking the LED.

The time interval of a single blink can be changed in the following line of

code: sleep(1)

Where the number 1 represents the number of seconds for the duration of the

time interval.

To end the infinite loop press CTRL + C on the keyboard. This is called the

keyboard interrupt, which is set in the except block (except

KyeboardInterrupt). In the expect block the on-board LED is turned

OFF.

- 24 -

Basic script

Connect the KY-039 module with the Uno as shown on the connection

diagram from the chapter Connecting the module with Uno, and then

connect the Uno with the Raspberry Pi via USB cable. Next, upload nanpy

firmware to the Uno, and use the following code to control the KY-039

module:

from nanpy import (ArduinoApi, SerialManager)

from time import sleep

try:

connection1 = SerialManager()

a = ArduinoApi(connection=connection1)

except:

print('Failed to connect to the Arduino')

value = 0

print('[Press CTRL + C to end the script!]')

try: # Main program loop

while True:

value = a.analogRead(0)

print('Output: {}'.format(value))

sleep(0.01)

Scavenging work after the end of the program

except KeyboardInterrupt:

print('\nScript end!')

- 25 -

Save the script by the name Heartbeat.py. To run the script open the

terminal in the directory where the scriptis saved and run the following

command:

python3 Heartbeat.py

- 26 -

Full Python script

Now, a new script will be created, to read and smooth the signal and then to

count the heartbeats. In the previous Python script, Heartbeat.py the

analog signal is read and the values are displayed in the terminal.

First, a library and a tool has to be installed. If the pip3 tool is not installed,

open the terminal and run the following commands, one by one:

sudo apt-get update

sudo apt-get install python3-pip

Now, install the library for plotting in Python by running the following

command in terminal:

pip3 install matplotlib

and wait for the installation to finish (it can last more than 10 minutes).

- 27 -

from nanpy import (ArduinoApi, SerialManager)

import time

import matplotlib.pyplot as plt

import os

def plot_em(et):

elapsed_time = time.time() - et

print('Script end! Elapsed time {:.3f}'.format(elapsed_time))

y = []

with open('new_data.txt', 'rt') as reader:

lines = reader.readlines()

for line in lines:

y.append(float(line))

x = range(len(y))

plt.plot(x, y)

plt.show()

try:

connection1 = SerialManager()

a = ArduinoApi(connection=connection1)

except:

print('Failed to connect to the Arduino')

check_file = False

sum_a = 0

sample_range = 44

last, new = 0.0, 0.0

last_rise, new_rise = False, False

count_beats, last_beats = 0, 0

measurements = 0

- 28 -

elapsed = time.time() # used to stop script

print('[Press CTRL + C to end the script!]')

try: # Main program loop

t = time.time()

while True:

sum_a += a.analogRead(0) # sensor is connected to A0

time.sleep(0.001)

measurements += 1

if measurements == sample_range:

new = sum_a / sample_range

if not check_file:

if os.path.isfile('new_data.txt'):

os.remove('new_data.txt')

check_file = True

with open('new_data.txt', 'at') as f:

f.write('{}\n'.format(new))

else:

with open('new_data.txt', 'at') as f:

f.write('{}\n'.format(new))

sum_a = 0

measurements = 0

 if new > last:

 rise = True

if new < last:

rise = False

new_rise = rise

if last_rise == True and new_rise == False:

count_beats += 1

last = new

last_rise = new_rise

- 29 -

2 tabs

if last_beats != count_beats:

print(count_beats)

last_beats = count_beats

if time.time() - elapsed > 15.0: # stop after 15sec

plot_em(t)

break

Scavenging work after the end of the program

except KeyboardInterrupt:

plot_em(t)

- 30 -

Save the script by the name HeartbeatsNew.py. To run the script open the

terminal in the directory where the script is saved and run the following

command:

python3 HeartbeatsNew.py

After 15 seconds script will end and the plot diagram is displayed on the

screen. The result in the terminal should look like the output on the following

image:

To close the window of the plot diagram press Q letter on the keyboard or

close it with the mouse by clicking “x”.

- 31 -

What the script does is counting and displaying heartbeats in the terminal

with the error of ±2 beats per 20 beats. The script ends itself after 15 seconds

and the plot diagram should look like the diagram on the following image:

- 32 -

First, the measurements are done on every 1ms. After a number of

measurements, the measurements get averaged. The average value gets

saved in the file called new_data.txt. The number of measurements is

saved in the sample_range variable that can be changed in other to adjust

the accuracy of the counting beats.

Next, peaks on the diagram curve are detected. It is assumed that every peak

is one heartbeat (which has to be tested more). After this, these peaks are

counted and the number of peaks is displayed in the terminal.

To plot everything, the data has to be stored in a file. In this case the data is

stored in the file called new_data.txt. The data from that file is read in the

plor_em() function after which the plot diagram is displayed.

At the end of the try block, in the last if statement the time interval for

script execution is created. Time interval is set to 15 seconds, but it can be

easily changed to any other value:

if time.time() - elapsed > 15.0: # stop after 15sec

plot_em(t)

break

- 33 -

The script execution can be ended at any time by pressing CTRL + C on the

keyboard, after which the plot diagram is shown.

NOTE: To get these values, protect the sensor from any other light source.

The nontransparent box can be created where the sensor can be protected

from the external light source. If the sensor is not hidden from other light

sources, the sensor reads the infrared light from other light sources which

disrort the output signal. If that happens the signal has to be cleaned from

that distortions in order for measurements to be useful.

- 34 -

Now it is the time to learn and make your own projects. You can do that with

the help of many example scripts and other tutorials, which can be found on

the internet.

If you are looking for the high quality products for Arduino and

Raspberry Pi, AZ-Delivery Vertriebs GmbH is the right company to get

them from. You will be provided with numerous application examples,

full installation guides, eBooks, libraries and assistance from our

technical experts.

https://az-delivery.de

Have Fun!

Impressum

https://az-delivery.de/pages/about-us

- 35 -

https://az-delivery.de/pages/about-us
https://az-delivery.de/

	Introduction
	Specifications
	The pinout
	How to set-up Arduino IDE
	How to set-up the Raspberry Pi and Python
	Connecting the module with Uno
	Sketch example

	Connecting the module with Raspberry Pi
	Basic script
	Full Python script

